If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2-12r+7=0
a = 4; b = -12; c = +7;
Δ = b2-4ac
Δ = -122-4·4·7
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{2}}{2*4}=\frac{12-4\sqrt{2}}{8} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{2}}{2*4}=\frac{12+4\sqrt{2}}{8} $
| 4c^2+10c=-4 | | 4c^2+10=-4 | | 2xˇ2-72=0 | | 28=0.25x | | 7(5+y)=49 | | (2x+4)+2x=18 | | 4x^2=6x+4 | | 37a+8.50a+14.99=242.49 | | (13+4y)+(4y)=-3 | | 8.50+14.99*37a=242.49 | | 5=7−n | | 9=3(k-7) | | 14.5j=17.98+17.4j | | 18+14w=18w-18 | | 37a+8.50+14.99=242.49 | | (8x-9)=(53) | | -16u=3-17u | | 37.a+8.50+14.99=242.49 | | 20-15g+9g=-4g-18 | | 37a+8.50+14.99=24249 | | -(4k+4)-5(k+8)=1 | | 14.2r+10.09-12.4r=-19.49-1.6r | | (53)1=(8x-9) | | -3h-19=-5-4h | | 8x+2-2x=20 | | -4n-18+11n=-1+6n | | -3s=12-6s | | 7(2a+2)=98 | | -1+7q=9q+9 | | 10-m=-10+4m | | -7s=-2-8s | | -10+1-8d=9-10d |